Bioinformatics Subtopics

Docking & Drug Design
Protein Geometry
Protein Flexibility
Structure Classification
Homology Modeling
Sequence Alignment
Fold Recognition
Secondary Structure Prediction
Function Classification
Database Design
Large-Scale Genomic Surveys
Expression Clustering
Gene Prediction
Genome Annotation
E-literature
Some Specific “Informatics” tools of Bioinformatics

• Databases
 ◊ NCBI GenBank - Protein and DNA sequence
 ◊ NCBI Human Map - Human Genome Viewer
 ◊ NCBI Ensembl - Genome browsers for human, mouse, zebra fish, mosquito
 ◊ TIGR - The Institute for Genome Research
 ◊ SwissProt - Protein Sequence and Function
 ◊ ProDom - Protein Domains
 ◊ Pfam - Protein domain families
 ◊ ProSite - Protein Sequence Motifs
 ◊ Protein Data Base (PDB) - Coordinates for Protein 3D structures
 ◊ SCOP Database - Domain structures organized into evolutionary families
 ◊ HSSP - Domain database using Dali
 ◊ FlyBase
 ◊ WormBase
 ◊ PubMed / MedLine

• Sequence Alignment Tools
 ◊ BLAST
 ◊ Clustal MSAs
 ◊ FASTA
 ◊ PSI-Blast
 ◊ Hidden Markov Models

• 3D Structure Alignments / Classifications
 ◊ Dali
 ◊ VAST
 ◊ PRISM
 ◊ CATH
 ◊ SCOP
Multiple Sequence Alignment (MSA)
Aligning Text Strings and Gaps

Raw Data ???
 T C A T G
 C A T T G

2 matches, 0 gaps
 T C A T G
 | |
 C A T T G

3 matches (2 end gaps)
 T C A T G .
 | |
 . C A T T G

4 matches, 1 insertion
 T C A - T G
 | | |
 . C A T T G

4 matches, 1 insertion
 T C A T - G
 | | |
 . C A T T G
Sequence Alignment E-value: Expect Value

- Each sequence alignment has a “bit score” or “similarity score” (S), a measure of the similarity between the hit and the query; normalized for “effective length”

- The E-value of the hit is

 ◊ the number of alignments in the database you are searching with similarity score ≥ S that you expect to find by chance;

◊ likelihood of the match relative to a pair of random sequences with the same amino acid composition

- E = 10^{-50}. Much more likely than a random occurrence
- E = 10^{-5}. This could be an accidental event
- E = 1. It is easy to find another hit in the database that is as

- The lower the Expect Value (E_val), the more significant the “hit”
E-value _Expect Value_

 Depends on:

- **Similarity Score (Bit Score):** Higher similarity score (e.g., high % seq id) corresponds to smaller E-value

- **Length of the query:** Since a particular Similarity Score is more easily obtained by chance with a longer query sequence, longer queries correspond to larger E-values

- **Size of the database:** Since a larger database makes a particular Similarity Score easier to obtain, a larger database results in larger E-values
Calculating E-val:

- **Raw Score**: calculated by counting the number of identities, mismatches, gaps, etc in the alignment

- **Bit Score**: Normalizes the “raw score” to provide a measure of sequence similarity that is independent of the scoring system

- **E-value**: \(E = mn2^{-S} \)

 where

 \(m \) - “effective length of the query” (accounts for the fact that ends may not line up);

 \(n \) - length of the database (number of residues or bases)

 \(S \) - Bit score
Simple Score

\[S = \sum_{i,j} S(i,j) - nG \]

S = Total Score

S(i,j) = similarity matrix score for aligning residues i and j

Sum is carried out over all aligned i and j residues

n = number of gaps

G = gap penalty

Simplest score - for “identity match matrix”

S(i,j) = 1 if matches
S(I,j) = 0 otherwise
Aligning Text Strings

Raw Data ???

T C A T G
C A T T G

2 matches, 0 gaps

T C A T G
| |
C A T T G

3 matches (2 end gaps)

T C A T G .
| |
. C A T T G

4 matches, 1 insertion

T C A - T G
| | | |
. C A T T G

4 matches, 1 insertion

T C A T - G
| | | |
. C A T T G
Dynamic Programming

- Needleman-Wunsch (1970) provided first automatic method for sequence alignment
 - Dynamic Programming to Find “Best” Global Alignment

- Test Data
 - ABCNYRQCLCRPM
 - AYCYNRCKCRBP
Step 1 -- Make a Similarity Matrix
(Match Scores Determined by Identity Matrix)

Put 1's where characters are identical.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>N</th>
<th>Y</th>
<th>R</th>
<th>Q</th>
<th>C</th>
<th>L</th>
<th>C</th>
<th>R</th>
<th>P</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(c) Mark Gerstein, 2002, Yale, bioinfo.mbb.yale.edu
Step 2 --
Start Computing the Sum Matrix

\[
\text{new_value_cell}(R, C) \leq \\
\text{cell}(R, C) \quad \{ \text{Old value, either 1 or 0} \} \\
+ \text{Max[} \\
\text{cell } (R+1, C+1), \quad \{ \text{Diagonally Down, no gaps} \} \\
\text{cells}(R+1, C+2 \text{ to } C_{\text{max}}), \{ \text{Down a row, making col. gap} \} \\
\text{cells}(R+2 \text{ to } R_{\text{max}}, C+1) \{ \text{Down a col., making row gap} \} \\
\text{]} \\
\]
Step 3 -- Keep Going

Diagram

![Diagram showing Step 3 -- Keep Going](image_url)

Table

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>N</th>
<th>Y</th>
<th>R</th>
<th>Q</th>
<th>C</th>
<th>L</th>
<th>C</th>
<th>R</th>
<th>P</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

(c) Mark Gerstein, 2002, Yale, bioinfo.mbb.yale.edu
Step 4 -- Sum Matrix All Done

Alignment Score is 8 matches.

```
A  B  C  N  Y  R  Q  C  L  C  R  P  M
A  1  1  1  1  1  1  1  1  1  1  1  1
Y  1  1  1  1  1  1  1  1  1  1  1  1
C  1  1  1  1  1  1  1  1  1  1  1  1
Y  1  1  1  1  1  1  1  1  1  1  1  1
N  1  1  1  1  1  1  1  1  1  1  1  1
R  1  1  1  1  1  1  1  1  1  1  1  1
C  3  3  3  3  3  3  3  3  3  3  3  3
K  3  3  3  3  3  3  3  3  3  3  3  3
C  2  2  2  2  2  2  2  2  2  2  2  2
R  2  2  2  2  2  2  2  2  2  2  2  2
B  1  1  1  1  1  1  1  1  1  1  1  1
P  0  0  0  0  0  0  0  0  0  0  0  0

A  B  C  N  Y  R  Q  C  L  C  R  P  M
A  8  4  4  4  4  4  4  4  4  4  4  4
Y  7  7  7  7  7  7  7  7  7  7  7  7
C  6  6  6  6  6  6  6  6  6  6  6  6
Y  6  6  6  6  6  6  6  6  6  6  6  6
N  5  5  5  5  5  5  5  5  5  5  5  5
R  4  4  4  4  4  4  4  4  4  4  4  4
C  3  3  3  3  3  3  3  3  3  3  3  3
K  3  3  3  3  3  3  3  3  3  3  3  3
C  2  2  2  2  2  2  2  2  2  2  2  2
R  2  2  2  2  2  2  2  2  2  2  2  2
B  1  1  1  1  1  1  1  1  1  1  1  1
P  0  0  0  0  0  0  0  0  0  0  0  0
```
Step 5 -- Traceback

Find Best Score (8) and Trace Back

```
A B C N Y - R Q C L C R - P M
A Y C - Y N R - C K C R B P
```

![Traceback Matrix](image)
Step 6 -- Alternate Tracebacks

A B C - N Y R Q C L C R - P M
A Y C Y N - R - C K C R B P

```
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>N</th>
<th>Y</th>
<th>R</th>
<th>Q</th>
<th>C</th>
<th>L</th>
<th>C</th>
<th>R</th>
<th>P</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Y</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Y</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>P</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
```
Gap Penalties

The score at a position can also factor in a penalty for introducing gaps (i.e., not going from i, j to i-1, j-1).

Gap penalties are often of linear form:

\[\text{GAP} = a + bN \]

GAP is the gap penalty
a = cost of opening a gap
b = cost of extending the gap by one
N = length of the gap

(e.g. assume b=0, a=1/2, so GAP = 1/2 regardless of length.)
Step 2 -- Computing the Sum Matrix with Gaps

new_value_cell(R,C) <=
 cell(R,C)
+ Max[
 cell (R+1, C+1),
 cells(R+1, C+2 to C_max) - GAP,
 cells(R+2 to R_max, C+1) - GAP
]

GAP = 1/2
Key Idea in Dynamic Programming

◊ The best alignment that ends at a given pair of positions (i and j) in the 2 sequences is the score of the best alignment previous to this position PLUS the score for aligning those two positions.

◊ An Example Below
 • Aligning R to K does not affect alignment of previous N-terminal residues. Once this is done it is **fixed**. Then go on to align D to E.
 • How could this be violated?
 Aligning R to K changes best alignment in box.
Substitution Matrices

- Count number of amino acid identities (or non-identities)

- Count the minimum number of mutations in the DNA needed to account for the non-identical pairs

- Measure of similarity based on frequency of mutations observed in homologous protein sequences

- Measure similarity based on physical properties
Similarity (Substitution) Matrix

- **Identity Matrix**
 - Match L with L => 1
 - Match L with D => 0
 - Match L with V => 0.5

- **S(aa-1,aa-2)**
 - Match L with L => 1
 - Match L with D => 0
 - Match L with V => 0.5

- **Number of Common Ones**
 - PAM
 - Blossum
 - Gonnet

	A	R	N	D	C	Q	E	G	H	I	L	K	M	F	P	S	T	W	Y	V
A	4	-1	-2	-2	0	-1	-1	0	-2	-1	-1	-1	-2	-1	1	0	-3	-2	0	
R	-1	5	0	-2	-3	1	0	-2	0	-3	-2	2	-1	-3	-2	-1	-1	-3	-2	-3
N	-2	0	6	1	-3	0	0	0	1	-3	-3	0	-2	-3	-2	1	0	-4	-2	-3
D	-2	-2	1	6	-3	0	2	-1	-1	-3	-4	-1	-3	-3	-1	0	-1	-4	-3	-3
C	0	-3	-3	-3	8	-3	-4	-3	-3	-1	-1	-3	-1	-2	-3	-1	-1	-2	-2	-1
Q	-1	1	0	0	-3	5	2	-2	0	-3	-2	1	0	-3	-1	0	-1	-2	-1	-2
E	-1	0	0	2	-4	2	5	-2	0	-3	-3	1	-2	-3	-1	0	-1	-3	-2	-2
G	0	-2	0	-1	-3	-2	-2	6	-2	-4	-4	-2	-3	-3	-2	0	-2	-2	-3	-3
H	-2	0	1	-1	-3	0	0	-2	7	-3	-3	-1	-2	-1	-2	-1	-2	-2	2	-3
I	-1	-3	-3	-3	-1	-3	-3	-4	-3	4	2	-3	1	0	-3	-2	-1	-3	-1	3
L	-1	-2	-3	-4	-1	-2	-3	-4	-3	2	4	-2	2	0	-3	-2	-1	-2	-1	1
K	-1	2	0	-1	-3	1	1	-2	-1	-3	-2	5	-1	-3	-1	0	-1	-3	-2	-2
M	-1	-1	-2	-3	-1	0	-2	-3	-2	1	2	-1	5	0	-2	-1	-1	-1	-1	1
F	-2	-3	-3	-3	-2	-3	-3	-3	-1	0	0	-3	0	6	-4	-2	-2	1	3	-1
P	-1	-2	-2	-1	-3	-1	-2	-2	-3	-3	-1	-2	-4	6	-1	-1	-4	-3	-2	
S	1	-1	1	0	-1	0	0	-1	-2	-2	0	-1	-2	-1	4	1	-3	-2	-2	
T	0	-1	0	-1	-1	-1	-1	-2	-1	-1	-1	-1	-2	-1	1	5	-2	-2	0	
W	-3	-3	-4	-4	-2	-2	-3	-2	-3	-2	-3	-1	1	4	-3	-2	10	2	-3	
Y	-2	-2	-2	-3	-2	-1	-2	-3	2	-1	-1	-2	-1	3	-3	-2	-2	2	6	-1
V	0	-3	-3	-3	-1	-2	-2	-3	-3	3	1	-2	1	-1	-2	-2	0	-3	-1	4
Where do matrices come from?

1. Manually align protein structures (or, more risky, sequences)
2. Look at frequency of a.a. substitutions at structurally constant sites. -- i.e. pair i - j exchanges
3. Compute log-odds
 \[S(aa-1,aa-2) = \log_2 \left(\frac{\text{freq}(O)}{\text{freq}(E)} \right) \]
 - \(O \) = observed exchanges,
 - \(E \) = expected exchanges
 - odds = freq(observed) / freq(expected)
 - \(S_{ij} = \log \text{odds} \)
 - freq(expected) = \(f(i)f(j) \)
 = is the chance of getting amino acid i in a column and then having it change to j
 - e.g. A-R pair observed only a tenth as often as expected

+ —> More likely than random
0 —> At random base rate
- —> Less likely than random
Amino Acid Frequencies of Occurrence

<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>1978</th>
<th>1991</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>0.085</td>
<td>0.091</td>
</tr>
<tr>
<td>A</td>
<td>0.087</td>
<td>0.077</td>
</tr>
<tr>
<td>G</td>
<td>0.089</td>
<td>0.074</td>
</tr>
<tr>
<td>S</td>
<td>0.070</td>
<td>0.069</td>
</tr>
<tr>
<td>V</td>
<td>0.065</td>
<td>0.066</td>
</tr>
<tr>
<td>E</td>
<td>0.050</td>
<td>0.062</td>
</tr>
<tr>
<td>T</td>
<td>0.058</td>
<td>0.059</td>
</tr>
<tr>
<td>K</td>
<td>0.081</td>
<td>0.059</td>
</tr>
<tr>
<td>I</td>
<td>0.037</td>
<td>0.053</td>
</tr>
<tr>
<td>D</td>
<td>0.047</td>
<td>0.052</td>
</tr>
<tr>
<td>R</td>
<td>0.041</td>
<td>0.051</td>
</tr>
<tr>
<td>P</td>
<td>0.051</td>
<td>0.051</td>
</tr>
<tr>
<td>N</td>
<td>0.040</td>
<td>0.043</td>
</tr>
<tr>
<td>Q</td>
<td>0.038</td>
<td>0.041</td>
</tr>
<tr>
<td>F</td>
<td>0.040</td>
<td>0.040</td>
</tr>
<tr>
<td>Y</td>
<td>0.030</td>
<td>0.032</td>
</tr>
<tr>
<td>M</td>
<td>0.015</td>
<td>0.024</td>
</tr>
<tr>
<td>H</td>
<td>0.034</td>
<td>0.023</td>
</tr>
<tr>
<td>C</td>
<td>0.033</td>
<td>0.020</td>
</tr>
<tr>
<td>W</td>
<td>0.010</td>
<td>0.014</td>
</tr>
</tbody>
</table>
Different Matrices are Appropriate at Different Evolutionary Distances

(Adapted from D Brutlag, Stanford)
Change in Matrix with Ev. Dist.

PAM-250 (distant)

(Adapted from D Brutlag, Stanford)
Are the evolutionary rates uniform over the whole of the protein sequence? (No.)

Use blocks of sequence fragments from different protein families which can be aligned without the introduction of gaps. Amino acid pair frequencies can be compiled from these blocks.

Different evolutionary distances are incorporated into this scheme with a clustering procedure: two sequences that are identical to each other for more than a certain threshold of positions are clustered.

More sequences are added to the cluster if they are identical to any sequence already in the cluster at the same level.

All sequences within a cluster are then simply averaged.

(A consequence of this clustering is that the contribution of closely related sequences to the frequency table is reduced, if the identity requirement is reduced.)

This leads to a series of matrices, analogous to the PAM series of matrices. BLOSUM80: derived at the 80% identity level.
Blast against Structural Genomic Target Registry (TargetDB) or against latest PDB or PDB-on-hold listings